Medical Imaging Interaction Toolkit  2016.11.0
Medical Imaging Interaction Toolkit
itk::MultiGaussianImageSource< TOutputImage > Class Template Reference

Generate an 3-dimensional multigaussian image. More...

#include <itkMultiGaussianImageSource.h>

Inheritance diagram for itk::MultiGaussianImageSource< TOutputImage >:
Collaboration diagram for itk::MultiGaussianImageSource< TOutputImage >:

Public Types

typedef MultiGaussianImageSource Self
 
typedef ImageSource< TOutputImage > Superclass
 
typedef SmartPointer< SelfPointer
 
typedef SmartPointer< const SelfConstPointer
 
typedef TOutputImage::PixelType OutputImagePixelType
 
typedef TOutputImage::RegionType OutputImageRegionType
 
typedef TOutputImage::SizeType SizeType
 
typedef TOutputImage::IndexType IndexType
 
typedef TOutputImage::SpacingType SpacingType
 
typedef TOutputImage::PointType PointType
 
typedef SizeType::SizeValueType SizeValueType
 
typedef SizeValueType SizeValueArrayType[TOutputImage::ImageDimension]
 
typedef TOutputImage::SpacingValueType SpacingValueType
 
typedef SpacingValueType SpacingValueArrayType[TOutputImage::ImageDimension]
 
typedef TOutputImage::PointValueType PointValueType
 
typedef PointValueType PointValueArrayType[TOutputImage::ImageDimension]
 
typedef itk::ImageRegion< 3 >::SizeValueType SizeRegionType
 
typedef double RadiusType
 
typedef std::vector< double > VectorType
 
typedef Vector< double, TOutputImage::ImageDimension > ItkVectorType
 
typedef ImageRegionIteratorWithIndex< TOutputImage > IteratorType
 
typedef TOutputImage::Pointer ImageType
 
typedef MapContainer< unsigned int, PointTypeMapContainerPoints
 
typedef MapContainer< unsigned int, double > MapContainerRadius
 

Public Member Functions

virtual void SetSize (SizeType _arg)
 
virtual void SetSize (SizeValueArrayType sizeArray)
 
virtual const SizeValueTypeGetSize () const
 
virtual void SetSpacing (SpacingType _arg)
 
virtual void SetSpacing (SpacingValueArrayType spacingArray)
 
virtual const SpacingValueTypeGetSpacing () const
 
virtual void SetOrigin (PointType _arg)
 
virtual void SetOrigin (PointValueArrayType originArray)
 
virtual const PointValueTypeGetOrigin () const
 
virtual unsigned int GetNumberOfGaussians () const
 
virtual void SetNumberOfGausssians (unsigned int)
 
virtual RadiusType GetRadius () const
 
virtual void SetRadius (RadiusType radius)
 
virtual const OutputImagePixelType GetMaxMeanValue () const
 
virtual const IndexType GetSphereMidpoint () const
 
virtual double MultiGaussianFunctionValueAtPoint (double, double, double)
 
virtual void AddGaussian (VectorType centerX, VectorType centerY, VectorType centerZ, VectorType sigmaX, VectorType sigmaY, VectorType sigmaZ, VectorType altitude)
 
virtual void CalculateTheMidpointAndTheMeanValueWithOctree ()
 
virtual void CalculateMaxAndMinInSphere ()
 
virtual const IndexType GetMaxValueIndexInSphere () const
 
virtual const OutputImagePixelType GetMaxValueInSphere () const
 
virtual const IndexType GetMinValueIndexInSphere () const
 
virtual const OutputImagePixelType GetMinValueInSphere () const
 
virtual void SetRegionOfInterest (ItkVectorType, ItkVectorType)
 
virtual void WriteXMLToTestTheCuboidInsideTheSphere ()
 
virtual void CalculateEdgesInSphere (PointType globalCoordinateMidpointCuboid, PointType globalCoordinateMidpointSphere, double cuboidRadius, int level)
 
virtual double MultiGaussianFunctionValueAtCuboid (double xMin, double xMax, double yMin, double yMax, double zMin, double zMax)
 
virtual void InsertPoints (PointType globalCoordinateMidpointCuboid, double cuboidRadius)
 
virtual void GenerateCuboidSegmentationInSphere (PointType globalCoordinateMidpointSphere)
 
virtual double FunctionPhi (double value)
 
virtual unsigned int IntersectTheSphere (PointType globalCoordinateMidpointCuboid, PointType globalCoordinateMidpointSphere, double sideLength)
 
void SetNormalDistributionValues ()
 
virtual void SetMin (OutputImagePixelType _arg)
 
bool IsInImage (IndexType index)
 
virtual OutputImagePixelType GetMin () const
 
virtual void SetMax (OutputImagePixelType _arg)
 
virtual OutputImagePixelType GetMax () const
 

Static Public Member Functions

static Pointer New ()
 

Protected Member Functions

 MultiGaussianImageSource ()
 
 ~MultiGaussianImageSource ()
 
void PrintSelf (std::ostream &os, Indent indent) const
 
virtual void GenerateData ()
 
virtual void GenerateOutputInformation ()
 

Detailed Description

template<typename TOutputImage>
class itk::MultiGaussianImageSource< TOutputImage >

Generate an 3-dimensional multigaussian image.

This class defines an 3-dimensional Image, in which the value at one voxel equals the value of a multigaussian function evaluated at the voxel's coordinates. The multigaussian function is built as a sum of N gaussian function and is defined by the following parameters (Generation of a multigauss image):

  1. CenterX, CenterY, CenterZ - vectors of the size of N determining the expectancy value at the x-, y- and the z-axis. That means: The i-th gaussian bell curve takes its maximal value at the voxel with index [CenterX(i); CenterY(i); Centerz(i)].
  2. SigmaX, SigmaY, SigmaZ - vectors of the size of N determining the deviation at the x-, y- and the z-axis. That means: The width of the i-th gaussian bell curve is determined by the deviation in the x-axis, which is SigmaX(i), in the y-axis is SigmaY(i) and in the z-axis is SigmaZ(i).
  3. Altitude - vector of the size of N determining the altitude: the i-th gaussian bell curve has a height of Altitude(i). This class allows by the method CalculateMidpointAndMeanValue() to find a sphere with a specified radius that has a maximal mean value over all sphere with that radius with midpoint inside or on the boundary of the image. Furthermore it can calculate the maximal und minimal pixel intensities and whose indices in the founded sphere.

To serve as a test tool for ImageStatisticsCalculator, esp. the "hotspot search" feature of this class, MultiGaussianImageSource is also able to calculate the position of a sphere that maximizes the mean value of the voxels within the sphere (Algorithm for calculating statistic in a sphere).

Generation of a multigauss image

A multigauss function consists of the sum of \( N \) gauss function. The \( i \)-th ( \(0 \leq i \leq N \)) gaussian is described with the following seven parameters (see above):

  • \( x_0^{(i)} \) is the expectancy value in the \( x \)-Axis
  • \( y_0^{(i)} \) is the expectancy value in the \( y \)-Axis
  • \( z_0^{(i)} \) is the expectancy value in the \( z \)-Axis
  • \( \sigma_x^{(i)} \) is the deviation in the \( x \)-Axis
  • \( \sigma_y^{(i)} \) is the deviation in the \( y \)-Axis
  • \( \sigma_z^{(i)} \) is the deviation in the \( z \)-Axis
  • \( a^{(i)} \) is the altitude of the gaussian.

A gauss function has the following form:

\begin{eqnarray} \nonumber f^{(i)}(x,y,z) = a^{(i)} exp \left[ - \left( \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} + \frac{(y - y_0^{(i)})^2}{2 (\sigma_y^{(i)})^2} + \frac{(z - z_0^{(i)})^2}{2 (\sigma_z^{(i)})^2} \right) \right]. \end{eqnarray}

A multigauss function has then the form:

\begin{align*} f_N(x,y,z) =& \sum_{i=0}^{N}f^{(i)}(x,y,z)\\ =&\sum_{0}^{N} a^{(i)} exp \left[ - \left( \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} + \frac{(y - y_0^{(i)})^2}{2 (\sigma_y^{(i)})^2} + \frac{(z - z_0^{(i)})^2}{2 (\sigma_z^{(i)})^2} \right) \right]. \end{align*}

The multigauss function \(f_N\) will be evaluated at each voxel coordinate to become the voxel intensity.

Algorithm for calculating statistic in a sphere

This section explains how we can find a sphere region which has a maximal mean value over all sphere regions with a fixed radius. Furthermore we want to calculate the maximal and minimal value in the wanted sphere.

To calculate the mean value in a sphere we integrate the gaussians over the whole sphere. The antiderivative is unknown as an explicit function, but we have a value table for the distribution function of the normal distribution \( \Phi(x) \) for \( x \) between \( -3.99 \) and \( 3.99 \) with step size \( 0.01 \). The only problem is that we cannot integrate over a spherical region, because we have an 3-dim integral and therefore are the integral limits dependent from each other and we cannot evaluate \( \Phi \). So we approximate the sphere with cuboids inside the sphere and prisms on the boundary of the sphere. We calculate these cuboids with the octree recursive method: We start by subdividing the wrapping box of the sphere in eight cuboids. Further we subdivide each cuboid in eight cuboids and check for each of them, whether it is inside or outside the sphere or whether it intersects the sphere surface. We save those of them, which are inside the sphere and continue to subdivide the cuboids that intersect the sphere until the recursion breaks. In the last step we take the half of the cuboids on the boundary and this are the prisms. Now we can calculate and sum the integrals over the cuboids and divide through the volume of the body to obtain the mean value.

For each cuboid \( Q = [a_1, b_1]\times[a_2, b_2]\times[a_3, b_3] \) we apply Fubini's theorem for integrable functions and become for the integral the following:

\begin{align*} m_k =& \sum_{i=0}^{N} \int_{Q} f^{(i)}(x,y,z)dx\\ =&\sum_{i=0}^{N} a^{(i)} \int_{Q} exp \left[ - \left( \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} + \frac{(y - y_0^{(i)})^2}{2 (\sigma_y^{(i)})^2} + \frac{(z - z_0^{(i)})^2}{2 (\sigma_z^{(i)})^2} \right) \right] dx \\ =& \sum_{i=0}^{N} a^{(i)} \int_{a_1}^{b_1} exp \left[ - \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} \right] dx \int_{a_2}^{b_2}exp \left[ -\frac{(y - y_0^{(i)})^2}{2 (\sigma_y^{(i)})^2} \right]dx \int_{a_3}^{b_3}exp \left[ -\frac{(z - z_0^{(i)})^2}{2 (\sigma_z^{(i)})^2} \right]dx. \end{align*}

So we calculate three one dimensional integrals:

\begin{align*} \int_{a}^{b} & exp \left[ - \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} \right] dx \\ =&\int_{-\infty}^{b} exp \left[ - \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} \right] dx - \int_{-\infty}^{a} exp \left[ - \frac{(x - x_0^{(i)})^2}{2 (\sigma_x^{(i)})^2} \right] dx \\ =& \sigma_x^{(i)} \left[\int_{-\infty}^{(a - x_0^{(i)})/ \sigma_x^{(i)}} e^{-\frac{t^2}{2}} dt - \int_{-\infty}^{(b - x_0^{(i)})/ \sigma_x^{(i)}} e^{-\frac{t^2}{2}}dt \right] \\ =&\sigma_x^{(i)} \sqrt{(\pi)} \left[ \Phi \left( \frac{(a - x_0^{(i)})^2}{\sigma_x^{(i)}} \right) - \Phi \left ( \frac{(b - x_0^{(i)})^2}{\sigma_x^{(i)}} \right) \right]. \end{align*}

and become for the integral over \( Q \):

\begin{align*} m_k =& \sum_{i=0}^{N} \sigma_x^{(i)} \sigma_y^{(i)} \sigma_z^{(i)} \pi^{1.5} \left[ \Phi \left( \frac{(a_1 - x_0^{(i)})^2}{\sigma_x^{(i)}} \right) - \Phi \left ( \frac{(b_1 - x_0^{(i)})^2}{\sigma_x^{(i)}} \right) \right]\times \\ &\left[ \Phi \left( \frac{(a_2 - y_0^{(i)})^2}{\sigma_y^{(i)}} \right) - \Phi \left ( \frac{(b_2 - y_0^{(i)})^2}{\sigma_y^{(i)}} \right) \right]\times \left[ \Phi \left( \frac{(a_3 - z_0^{(i)})^2}{\sigma_z^{(i)}} \right) - \Phi \left ( \frac{(b_3 - z_0^{(i)})^2}{\sigma_z^{(i)}} \right) \right]. \end{align*}

For the integral over the prism we take the half of the integral over the corresponding cuboid.

Altogether we find the mean value in the sphere as:

\begin{align*} \left( \sum_{Q_k \text{ Cuboid}} m_k + \sum_{P_l \text{ Prism}} 0.5 m_l \right )/Volume(B), \end{align*}

where Volume(B) is the volume of the body that approximate the sphere.

Now we know how to calculate the mean value in a sphere for given midpoint and radius. So we assume each voxel in the given image to be the sphere midpoint and we calculate the mean value as described above. If the new mean value is greater than the "maximum-until-now", we take the new value to be the "maximum-until-now". Then we go to the next voxel and make the same calculation and so on. At the same time we save the coordinates of the midpoint voxel.

After we found the midpoint and the maximal mean value, we can calculate the maximum and the minimum in the sphere: we just traverse all the voxels in the region and take the maximum and minimum value and the respective coordinates.

Input and output

An example for an input in the command-line is:

  mitkMultiGaussianTest C:/temp/outputFile C:/temp/inputFile.xml

Here is outputFile the name of the gaussian image with extension .nrrd and at the same time the name of the output file with extension .xml, which is the same as the inputFile, only added the calculated mean value, max and min and the corresponding indexes in the statistic tag. Here we see an example for the input and output .xml file:

INPUT:

<testcase>
  <testimage image-rows="20" image-columns="20" image-slices="20" numberOfGaussians="2" spacingX="1" spacingY="1" spacingZ="1" entireHotSpotInImage="1">
    <gaussian centerIndexX="4" centerIndexY="16" centerIndexZ="10" deviationX="7" deviationY="7" deviationZ="7" altitude="200"/>
    <gaussian centerIndexX="18" centerIndexY="2" centerIndexZ="10" deviationX="1" deviationY="1" deviationZ="1" altitude="210"/>
  </testimage>
  <segmentation numberOfLabels="1" hotspotRadiusInMM="6.2035">
    <roi label="1" maximumSizeX="20" minimumSizeX="0" maximumSizeY="20" minimumSizeY="0" maximumSizeZ="20" minimumSizeZ="0"/>
  </segmentation>
</testcase>
OUTPUT:

<testcase>
  <testimage image-rows="20" image-columns="20" image-slices="20" numberOfGaussians="2" spacingX="1" spacingY="1" spacingZ="1" entireHotSpotInImage="1">
    <gaussian centerIndexX="4" centerIndexY="16" centerIndexZ="10" deviationX="7" deviationY="7" deviationZ="7" altitude="200"/>
    <gaussian centerIndexX="18" centerIndexY="2" centerIndexZ="10" deviationX="1" deviationY="1" deviationZ="1" altitude="210"/>
  </testimage>
  <segmentation numberOfLabels="1" hotspotRadiusInMM="6.2035">
    <roi label="1" maximumSizeX="20" minimumSizeX="0" maximumSizeY="20" minimumSizeY="0" maximumSizeZ="20" minimumSizeZ="0"/>
  </segmentation>
  <statistic hotspotIndexX="6" hotspotIndexY="13" hotspotIndexZ="10" peak="141.544" mean="141.544" maximumIndexX="4" maximumIndexY="16" maximumIndexZ="10" maximum="200" minimumIndexX="9" minimumIndexY="8" minimumIndexZ="8"  minimum="77.4272"/>
</testcase>

Parameter for the input

In the tag testimage we describe the image that we generate. Image rows/columns/slices gives the number of rows/columns/slices of the image; numberOfGaussians is the number of gauss functions ( \( N \)); spacing defines the extend of one voxel for each direction. The parameter entireHotSpotInImage determines whether the whole sphere is in the image included ( \( = 1 \)) or only the midpoint of the sphere is inside the image.

NOTE: When the entireHotSpotInImage \( = 0 \) it is possible that we find the midpoint of the sphere on the border of the image. In this case we cut the approximation of the sphere, so that we become a body, which is completely inside the image, but not a "sphere" anymore. To that effect is the volume of the body decreased and that could lead to unexpected results.

In the subtag gaussian we describe each gauss function as mentioned in the second section.

In the tag segmentation we define the radius of the wanted sphere in mm (hotspotRadiusInMM ). We can also set the number of labels (numberOfLabels ) to be an positive number and this determines the number of regions of interest (ROI). In each ROI we find the sphere with the wanted properties and midpoint inside the ROI, but not necessarily the whole sphere. In the subtag roi we set label number and the index coordinates for the borders of the roi.

Definition at line 194 of file itkMultiGaussianImageSource.h.

Member Typedef Documentation

template<typename TOutputImage >
typedef SmartPointer< const Self > itk::MultiGaussianImageSource< TOutputImage >::ConstPointer

Definition at line 201 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::Pointer itk::MultiGaussianImageSource< TOutputImage >::ImageType

Typedef to describe the Poiner type at the output image.

Definition at line 233 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::IndexType itk::MultiGaussianImageSource< TOutputImage >::IndexType

Definition at line 214 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef ImageRegionIteratorWithIndex<TOutputImage> itk::MultiGaussianImageSource< TOutputImage >::IteratorType

Typedef to describe the ImageRegionIteratorWithIndex type.

Definition at line 231 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef Vector<double, TOutputImage::ImageDimension> itk::MultiGaussianImageSource< TOutputImage >::ItkVectorType

Typedef to describe the itk vector type.

Definition at line 229 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef MapContainer<unsigned int, PointType> itk::MultiGaussianImageSource< TOutputImage >::MapContainerPoints

Definition at line 235 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef MapContainer<unsigned int, double> itk::MultiGaussianImageSource< TOutputImage >::MapContainerRadius

Definition at line 236 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::PixelType itk::MultiGaussianImageSource< TOutputImage >::OutputImagePixelType

Typedef for the output image PixelType.

Definition at line 204 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::RegionType itk::MultiGaussianImageSource< TOutputImage >::OutputImageRegionType

Typedef to describe the output image region type.

Definition at line 207 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef SmartPointer< Self > itk::MultiGaussianImageSource< TOutputImage >::Pointer

Definition at line 200 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::PointType itk::MultiGaussianImageSource< TOutputImage >::PointType

Definition at line 216 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef PointValueType itk::MultiGaussianImageSource< TOutputImage >::PointValueArrayType[TOutputImage::ImageDimension]

Definition at line 222 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::PointValueType itk::MultiGaussianImageSource< TOutputImage >::PointValueType

Definition at line 221 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef double itk::MultiGaussianImageSource< TOutputImage >::RadiusType

Typedef to describe the sphere radius type.

Definition at line 225 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef MultiGaussianImageSource itk::MultiGaussianImageSource< TOutputImage >::Self

Standard class typedefs.

Definition at line 198 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef itk::ImageRegion<3>::SizeValueType itk::MultiGaussianImageSource< TOutputImage >::SizeRegionType

Definition at line 223 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::SizeType itk::MultiGaussianImageSource< TOutputImage >::SizeType

Basic types from the OutputImageType

Definition at line 210 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef SizeValueType itk::MultiGaussianImageSource< TOutputImage >::SizeValueArrayType[TOutputImage::ImageDimension]

Definition at line 218 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef SizeType::SizeValueType itk::MultiGaussianImageSource< TOutputImage >::SizeValueType

Definition at line 217 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::SpacingType itk::MultiGaussianImageSource< TOutputImage >::SpacingType

Definition at line 215 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef SpacingValueType itk::MultiGaussianImageSource< TOutputImage >::SpacingValueArrayType[TOutputImage::ImageDimension]

Definition at line 220 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef TOutputImage::SpacingValueType itk::MultiGaussianImageSource< TOutputImage >::SpacingValueType

Definition at line 219 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef ImageSource< TOutputImage > itk::MultiGaussianImageSource< TOutputImage >::Superclass

Definition at line 199 of file itkMultiGaussianImageSource.h.

template<typename TOutputImage >
typedef std::vector<double> itk::MultiGaussianImageSource< TOutputImage >::VectorType

Typedef to describe the standard vector type.

Definition at line 227 of file itkMultiGaussianImageSource.h.

Constructor & Destructor Documentation

template<typename TOutputImage >
itk::MultiGaussianImageSource< TOutputImage >::MultiGaussianImageSource ( )
protected
template<typename TOutputImage >
itk::MultiGaussianImageSource< TOutputImage >::~MultiGaussianImageSource ( )
protected

Member Function Documentation

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::AddGaussian ( VectorType  centerX,
VectorType  centerY,
VectorType  centerZ,
VectorType  sigmaX,
VectorType  sigmaY,
VectorType  sigmaZ,
VectorType  altitude 
)
virtual

Adds a multigaussian defined by the parameter: CenterX, CenterY, CenterZ, SigmaX, SigmaY, SigmaZ, Altitude. All parameters should have the same size, which determinates the number of the gaussian added.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::CalculateEdgesInSphere ( PointType  globalCoordinateMidpointCuboid,
PointType  globalCoordinateMidpointSphere,
double  cuboidRadius,
int  level 
)
virtual

This recursive method realise the octree method. It subdivide a cuboid in eight cuboids, when this cuboid crosses the boundary of sphere. If the cuboid is inside the sphere, it calculates the integral.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::CalculateMaxAndMinInSphere ( )
virtual

Calculates and set the index an the value of maximulm and minimum in the wanted sphere.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::CalculateTheMidpointAndTheMeanValueWithOctree ( )
virtual

Calculates and set the index of the midpoint of the sphere with the maximal mean value as well as the mean value.

template<typename TOutputImage >
virtual double itk::MultiGaussianImageSource< TOutputImage >::FunctionPhi ( double  value)
virtual

Get the the values of the cumulative distribution function of the normal distribution.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::GenerateCuboidSegmentationInSphere ( PointType  globalCoordinateMidpointSphere)
virtual

Start the octree recursion in eigth directions for the sphere with midpoint globalCoordinateMidpointSphere.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::GenerateData ( )
protectedvirtual
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::GenerateOutputInformation ( )
protectedvirtual
template<typename TOutputImage >
virtual OutputImagePixelType itk::MultiGaussianImageSource< TOutputImage >::GetMax ( ) const
virtual

Get the maximum possible pixel value.

template<typename TOutputImage >
virtual const OutputImagePixelType itk::MultiGaussianImageSource< TOutputImage >::GetMaxMeanValue ( ) const
virtual

Get the maximal mean value in a sphere over all possible spheres with midpoint in the image.

template<typename TOutputImage >
virtual const IndexType itk::MultiGaussianImageSource< TOutputImage >::GetMaxValueIndexInSphere ( ) const
virtual

Get the index in the sphere with maximal value.

template<typename TOutputImage >
virtual const OutputImagePixelType itk::MultiGaussianImageSource< TOutputImage >::GetMaxValueInSphere ( ) const
virtual

Get the maximal value in the sphere.

template<typename TOutputImage >
virtual OutputImagePixelType itk::MultiGaussianImageSource< TOutputImage >::GetMin ( ) const
virtual

Get the minimum possible pixel value.

template<typename TOutputImage >
virtual const IndexType itk::MultiGaussianImageSource< TOutputImage >::GetMinValueIndexInSphere ( ) const
virtual

Get the index in the sphere with minimal value.

template<typename TOutputImage >
virtual const OutputImagePixelType itk::MultiGaussianImageSource< TOutputImage >::GetMinValueInSphere ( ) const
virtual

Get the minimal value in the sphere.

template<typename TOutputImage >
virtual unsigned int itk::MultiGaussianImageSource< TOutputImage >::GetNumberOfGaussians ( ) const
virtual

Get the number of gaussian functions in the output image.

template<typename TOutputImage >
virtual const PointValueType* itk::MultiGaussianImageSource< TOutputImage >::GetOrigin ( ) const
virtual
template<typename TOutputImage >
virtual RadiusType itk::MultiGaussianImageSource< TOutputImage >::GetRadius ( ) const
virtual

Set/Get the radius of the sphere.

template<typename TOutputImage >
virtual const SizeValueType* itk::MultiGaussianImageSource< TOutputImage >::GetSize ( ) const
virtual
template<typename TOutputImage >
virtual const SpacingValueType* itk::MultiGaussianImageSource< TOutputImage >::GetSpacing ( ) const
virtual
template<typename TOutputImage >
virtual const IndexType itk::MultiGaussianImageSource< TOutputImage >::GetSphereMidpoint ( ) const
virtual

Get the index of the midpoint of a sphere with the maximal mean value.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::InsertPoints ( PointType  globalCoordinateMidpointCuboid,
double  cuboidRadius 
)
virtual

Inseret the midpoints of cuboid in a vector m_Midpoints, so that we can visualise it.

template<typename TOutputImage >
virtual unsigned int itk::MultiGaussianImageSource< TOutputImage >::IntersectTheSphere ( PointType  globalCoordinateMidpointCuboid,
PointType  globalCoordinateMidpointSphere,
double  sideLength 
)
virtual

Check if a cuboid with midpoint globalCoordinateMidpointCuboid and side length sideLength intersect the sphere with midpoint globalCoordinateMidpointSphere boundary.

template<typename TOutputImage >
bool itk::MultiGaussianImageSource< TOutputImage >::IsInImage ( IndexType  index)

Check if a index is inside the image

template<typename TOutputImage >
virtual double itk::MultiGaussianImageSource< TOutputImage >::MultiGaussianFunctionValueAtCuboid ( double  xMin,
double  xMax,
double  yMin,
double  yMax,
double  zMin,
double  zMax 
)
virtual

Calculate and return value of the integral of the gaussian in a cuboid region with the dimension 3: in the x-axis between xMin and xMax and in the y-axis between yMin and yMax and in the z-axis also between zMin and zMax.

template<typename TOutputImage >
virtual double itk::MultiGaussianImageSource< TOutputImage >::MultiGaussianFunctionValueAtPoint ( double  ,
double  ,
double   
)
virtual

Calculates the value of the multigaussian function at a Point given by its coordinates [x, y, z].

template<typename TOutputImage >
static Pointer itk::MultiGaussianImageSource< TOutputImage >::New ( )
static

Method for creation through the object factory.

template<typename TOutputImage >
void itk::MultiGaussianImageSource< TOutputImage >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
protected
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetMax ( OutputImagePixelType  _arg)
virtual

Set the maximum possible pixel value. By default, it is NumericTraits<TOutputImage::PixelType>::max().

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetMin ( OutputImagePixelType  _arg)
virtual

Set the minimum possible pixel value. By default, it is NumericTraits<TOutputImage::PixelType>::min().

template<typename TOutputImage >
void itk::MultiGaussianImageSource< TOutputImage >::SetNormalDistributionValues ( )

Set the tabel values of the distribution function of the normal distribution.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetNumberOfGausssians ( unsigned  int)
virtual

Set the number of gaussian function.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetOrigin ( PointType  _arg)
virtual

Set/Get origin of the output image. This programm works proper only with origin [0.0, 0.0, 0.0]

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetOrigin ( PointValueArrayType  originArray)
virtual
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetRadius ( RadiusType  radius)
virtual
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetRegionOfInterest ( ItkVectorType  ,
ItkVectorType   
)
virtual

Set the region of interest.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetSize ( SizeType  _arg)
virtual

Set/Get size of the output image.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetSize ( SizeValueArrayType  sizeArray)
virtual
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetSpacing ( SpacingType  _arg)
virtual

Set/Get spacing of the output image.

template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::SetSpacing ( SpacingValueArrayType  spacingArray)
virtual
template<typename TOutputImage >
virtual void itk::MultiGaussianImageSource< TOutputImage >::WriteXMLToTestTheCuboidInsideTheSphere ( )
virtual

Write a .mps file to visualise the point in the sphere.


The documentation for this class was generated from the following file: