1 #ifndef mitkLinearSplitting_h
2 #define mitkLinearSplitting_h
4 #include <vigra/multi_array.hxx>
5 #include <vigra/random_forest.hxx>
9 template<
class TLossAccumulator>
33 template <
class TDataSourceFeature,
34 class TDataSourceLabel,
37 void operator()(TDataSourceFeature
const &column,
38 TDataSourceLabel
const &labels,
41 TArray
const ®ionResponse);
43 template <
class TDataSourceLabel,
49 TArray
const & regionResponse);
58 return m_MinimumThreshold;
63 return m_MinimumIndex;
68 return m_BestCurrentCounts;
72 bool m_UsePointWeights;
73 bool m_UseRandomSplit;
74 WeightContainerType m_PointWeights;
76 vigra::ArrayVector<double> m_ClassWeights;
77 vigra::ArrayVector<double> m_BestCurrentCounts[2];
79 double m_MinimumThreshold;
80 std::ptrdiff_t m_MinimumIndex;
81 vigra::ProblemSpec<> m_ExtParameter;
85 #include <../src/Splitter/mitkLinearSplitting.cpp>
86 #endif //mitkLinearSplitting_h
void operator()(TDataSourceFeature const &column, TDataSourceLabel const &labels, TDataIterator &begin, TDataIterator &end, TArray const ®ionResponse)
void SetPointWeights(WeightContainerType weight)
std::ptrdiff_t GetMinimumIndex()
void set_external_parameters(vigra::ProblemSpec< T > const &ext)
bool IsUsingRandomSplit()
void UseRandomSplit(bool randomSplit)
void UsePointWeights(bool pointWeight)
DataCollection - Class to facilitate loading/accessing structured data.
bool IsUsingPointWeights()
double GetMinimumThreshold()
WeightContainerType GetPointWeights()
TLossAccumulator::WeightContainerType TWeightContainer
TWeightContainer WeightContainerType
vigra::ArrayVector< double > * GetBestCurrentCounts()
double LossOfRegion(TDataSourceLabel const &labels, TDataIterator &begin, TDataIterator &end, TArray const ®ionResponse)