Medical Imaging Interaction Toolkit  2025.08.99-f7084adb
Medical Imaging Interaction Toolkit
MitkGenericFitting User Guide

Overview

MitkGenericFitting is a command-line tool for fitting model functions to time-resolved imaging data (3D+t). It supports voxel-wise or region-based fitting using a mask and produces parameter images as output.

Supported image types for input include .nrrd, .nii, and DICOM files.

Supported Models

Linear Model

  • Model: y = a + b*t
  • Specify with: --function Linear

Generic Model (2 parameters)

  • User-defined model formula using two free parameters (a, b)
  • Example: y = a * exp(-b*x)
  • The parser is able to recognize:
    • sums, differences, products and divisions (a + b, 4 - 3, 2 * x, 9 / 3)
    • algebraic signs ( +5, -5)
    • exponentiation ( 2 ^ 4 )
    • parentheses (3 * (4 + 2))
    • following unary functions: abs, exp, sin, cos, tan, sind (sine in degrees), cosd (cosine in degrees), tand (tangent in degrees)
    • variables (x, a, b, ... j)

Remarks

  • The variable "x" is reserved. It is the signal position / timepoint.

- The current version supports 2 model parameter (a, b)

Usage

MitkGenericFitting -i <inputImage> -o <outputTemplate> -f <functionType> [options]

Required Arguments

Argument Short Type Description
--input -i file Input dynamic image (3D+t).
--output -o file Output template file path for resulting parameter images. File extensions determine output format.
--function -f string Model type: "Linear" or "Generic-2" for generic 2 parameter model. Default is Linear.

Optional Arguments

Argument Short Type Description
--formular -y string Model formula string (required for generic models).
--mask -m file Binary mask image defining ROI. Required for ROI-based fitting.
--roibased -r flag Use ROI-based fitting (fit mean signal in mask).
--verbose -v flag Enable verbose output.
--help -h flag Show help text.

Output

For each fitted model parameter, a separate image will be created. The output filenames will be based on the --output template plus a suffix per parameter (e.g., _Param_0.nrrd, _Param_1.nrrd).
A fitting summary and evaluation metric image (e.g., Chi^2) will also be generated.

Fitting Modes

Pixel-based Fitting (Default)

  • The model is fitted to each voxel individually.
  • Mask is optional (if provided, fitting is constrained to masked region).

ROI-based Fitting

  • The average time-intensity curve within the mask is computed.
  • The model is fitted to the ROI curve.
  • Output will be constant-valued images reflecting the ROI fit result.

Examples

1. Linear Model Fit (Pixel-based)

MitkGenericFitting -i dyn.nrrd -o result/linFit.nrrd -f Linear

Description:
Performs voxel-wise fitting of a linear model on dyn.nrrd.

Naming Strategy:

  • Output parameter images: linFit_y-intercept.nrrd (intercept), linFit_slope.nrrd (slope)

Generated Values:

  • Each voxel gets individual values for intercept and slope.

2. Exponential Decay (Generic, Pixel-based)

MitkGenericFitting -i dyn.nrrd -o result/expFit.nrrd -f Generic-2 -y "a*exp(-b*x)"

Description:
Fits an exponential decay model to each voxel.

Naming Strategy:

  • Output files: expFit_a.nrrd (a), expFit_b.nrrd (b)

Generated Values:

  • Each voxel gets a fitted p0 and p1 value for the exponential model.

3. ROI-based Linear Fit

MitkGenericFitting -i dyn.nrrd -o result/roiLinFit.nrrd -f Linear -m mask.nrrd -r

Description:
Fits a linear model to the mean curve inside the mask.

Naming Strategy:

  • Output parameter images: roiLinFit_y-intercept.nrrd (intercept), roiLinFit_slope.nrrd (slope)

Generated Values:

  • Each output image has constant values representing ROI fit result.