#include <mitkThresholdSplit.h>
|
| ThresholdSplit () |
|
void | SetFeatureCalculator (TFeatureCalculator processor) |
|
TFeatureCalculator | GetFeatureCalculator () const |
|
void | SetCalculatingFeature (bool calculate) |
|
bool | IsCalculatingFeature () const |
|
void | UsePointBasedWeights (bool weightsOn) |
|
bool | IsUsingPointBasedWeights () const |
|
void | UseRandomSplit (bool split) |
|
bool | IsUsingRandomSplit () const |
|
void | SetPrecision (double value) |
|
double | GetPrecision () const |
|
void | SetMaximumTreeDepth (int value) |
|
int | GetMaximumTreeDepth () const override |
|
void | SetAdditionalData (AdditionalRFDataAbstract *data) |
|
AdditionalRFDataAbstract * | GetAdditionalData () const |
|
void | SetWeights (vigra::MultiArrayView< 2, double > weights) |
|
vigra::MultiArrayView< 2, double > | GetWeights () const |
|
double | minGini () const |
|
int | bestSplitColumn () const |
|
double | bestSplitThreshold () const |
|
template<class T > |
void | set_external_parameters (vigra::ProblemSpec< T > const &in) |
|
template<class T , class C , class T2 , class C2 , class Region , class Random > |
int | findBestSplit (vigra::MultiArrayView< 2, T, C > features, vigra::MultiArrayView< 2, T2, C2 > labels, Region ®ion, vigra::ArrayVector< Region > &childRegions, Random &randint) |
|
template<class TColumnDecisionFunctor, class TFeatureCalculator, class TTag = vigra::ClassificationTag>
class mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >
Definition at line 23 of file mitkThresholdSplit.h.
◆ ThresholdSplit()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
◆ bestSplitColumn()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
int mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::bestSplitColumn |
( |
| ) |
const |
◆ bestSplitThreshold()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
double mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::bestSplitThreshold |
( |
| ) |
const |
◆ findBestSplit()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
template<class T , class C , class T2 , class C2 , class Region , class Random >
int mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::findBestSplit |
( |
vigra::MultiArrayView< 2, T, C > |
features, |
|
|
vigra::MultiArrayView< 2, T2, C2 > |
labels, |
|
|
Region & |
region, |
|
|
vigra::ArrayVector< Region > & |
childRegions, |
|
|
Random & |
randint |
|
) |
| |
◆ GetAdditionalData()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
◆ GetFeatureCalculator()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
TFeatureCalculator mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::GetFeatureCalculator |
( |
| ) |
const |
◆ GetMaximumTreeDepth()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
int mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::GetMaximumTreeDepth |
( |
| ) |
const |
|
override |
◆ GetPrecision()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
double mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::GetPrecision |
( |
| ) |
const |
◆ GetWeights()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
vigra::MultiArrayView<2, double> mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::GetWeights |
( |
| ) |
const |
◆ IsCalculatingFeature()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
bool mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::IsCalculatingFeature |
( |
| ) |
const |
◆ IsUsingPointBasedWeights()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
bool mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::IsUsingPointBasedWeights |
( |
| ) |
const |
◆ IsUsingRandomSplit()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
bool mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::IsUsingRandomSplit |
( |
| ) |
const |
|
inline |
◆ minGini()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
◆ set_external_parameters()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
template<class T >
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::set_external_parameters |
( |
vigra::ProblemSpec< T > const & |
in | ) |
|
◆ SetAdditionalData()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
◆ SetCalculatingFeature()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::SetCalculatingFeature |
( |
bool |
calculate | ) |
|
◆ SetFeatureCalculator()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::SetFeatureCalculator |
( |
TFeatureCalculator |
processor | ) |
|
◆ SetMaximumTreeDepth()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::SetMaximumTreeDepth |
( |
int |
value | ) |
|
◆ SetPrecision()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::SetPrecision |
( |
double |
value | ) |
|
◆ SetWeights()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::SetWeights |
( |
vigra::MultiArrayView< 2, double > |
weights | ) |
|
◆ UsePointBasedWeights()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::UsePointBasedWeights |
( |
bool |
weightsOn | ) |
|
◆ UseRandomSplit()
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
void mitk::ThresholdSplit< TColumnDecisionFunctor, TFeatureCalculator, TTag >::UseRandomSplit |
( |
bool |
split | ) |
|
|
inline |
◆ region_gini_
template<class TColumnDecisionFunctor , class TFeatureCalculator , class TTag = vigra::ClassificationTag>
The documentation for this class was generated from the following file: